This section provides a comprehensive overview of the tutorials available in the OM1 documentation. Each tutorial is designed to help you understand and implement various features and functionalities of OM1.

Tutorials list

All the implementation configurations of the tutorials are available in the OM1 GitHub repository.

  • conversation.json5
  • cubly.json5
  • deepseek.json5
  • gemini.json5
  • grok.json5
  • healthy.json5
  • multiagent.json5
  • open_ai.json5
  • quadruped_sim.json5
  • rag_multiagent.json5
  • robot_wallet_safe.json5
  • spot.json5
  • tesla.json5
  • turtlebot4.json5
  • turtlebot4_lidar.json5
  • turtlebot4_old.json5
  • twitter.json5
  • unitree_g1_humanoid.json5
  • unitree_go2.json5
  • unitree_go2_lidar.json5
  • unitree_go2_remote.json5

Configuration files

Each tutorial has its own configuration file. Let’s go through the configuration files section by section. There are 4 main sections in the configuration files:

  • agent_inputs
  • cortex_llm
  • agent_actions
  • simulators

Refer to the Configuration Files section for more information.

agent_inputs

Refer to the Agent Inputs plugin section for more information.

There are multiple types of agent_inputs in the configuration files. Let’s go through them.

DIMO

  • DIMOTesla - Read Tesla data from DIMO API and use it as an agent input

Vision

  • FaceEmotionCapture - Use Face Emotion Capture as an agent input
  • VLMVila - Use VLM Vila as an agent input
  • VLM_COCO_Local - Use VLM COCO Local as an agent input

Audio

  • GoogleASRInput - Use Google ASR as an agent input

Lidar

  • RPLidar - Use RPLidar to read LiDAR data as an agent input

GPS

  • SerialReader - Use Serial Reader to read GPS data as an agent input

Robot

  • TurtleBot4Batt - Use TurtleBot4 Batt as an agent input
  • UnitreeG1Basic - Use Unitree G1 Basic as an agent input
  • UnitreeGo2CameraVLMCloud - Use Unitree Go2 Camera VLM Cloud as an agent input
  • UnitreeGo2Lowstate - Use Unitree Go2 Lowstate as an agent input

Misc

  • GovernanceEthereum - Use Governance rules for robots on Ethereum as an agent input
  • TwitterInput - Use Twitter Input specified in the config as an agent input

cortex_llm

Refer to the Cortex LLM integration section for more information.

OM1 supports multiple LLMs models:

  • OpenAILLM - openai GPT 4o, GPT 4o mini
  • DeepSeekLLM - DeepSeek Chats
  • GeminiLLM - gemini-2.0-flash-exp
  • XAILLM - grok-3-mini-beta
  • MultiLLM - multi-agent LLM with openai GPT 4o, GPT 4o mini, GPT 4.1, GPT 4.1-mini, GPT 4.1-nano

agent_actions

Refer to the Agent Actions plugin section for more information.

There are 2 main types of agent_actions:

  • Movement
  • Speech

For movement, refer to the Movement plugin via ROS2 section for more information, or the Movement plugin via zenoh section for more information.

For speech, refer to the Speech plugin section for more information.

simulators

  • WebSim - Use WebSim as an agent input

Customize your robot